Synthesis of (2S,3S)g&2H,] -, **(2S,3R)- [2,3-2H2]** -, **(2S,3S,4RS)-[3-2H,,4-3H,]** -, **and (2S,3R,4RS)** = **[2,3-2H,,4-3H,]** - **Glutarnic Acids**

By STEVEN J. **FIELD** and **DOUGLAS W. YOUNG*** *(School of Molecular Sciences, University of Sussex, Falmer, Brighton* **BN1** *QQ* J)

Summary Synthesis **of (2S,3S)-[3-2H,]-, (2S,3R)-[2,3-** been achieved; the route involves a step where Wolff $[2,3^{-2}H_2,4^{-3}H_1]$ - glutamic acids in useful amounts has

²H₂]-, $(2\overline{S},3S,4RS)$ -[3-²H₁,4-³H₁]-, and $(2S,3R,4RS)$ - rearrangement occurs with retention of stereochemistry [2,3-²H₂,4-³H₁]- glutamic acids in useful amounts has at a secondary chiral centre.

GLUTAMIC ACID (1) and its derivatives glutamine and glutathione play a central role in the metabolism of aminoacids and of ammonia.¹ In one pathway, the bacterial fermentation of glutamate by *Clostridium tetanomorphum* is initiated by the rearrangement of glutamate (1) to β methylaspartate **(2)** which is catalysed by the coenzyme vitamin B_{12} and the enzyme glutamate mutase. Subsequent elimination of ammonia by β -methylaspartase yields mesaconate **(3).** The rearrangement involves migration **of** the carbon C-2 of glutamate to C-4, and of the **4-** *pro-S* hydrogen to C-32 thus creating the methyl group. The stereochemistry of the rearrangement with respect to C-3 of glutamate (1) which becomes the methyl group in β methylaspartate **(2)** and in mesaconate **(3)** is as yet unknown. This point could be examined if samples **of** glutamic acid were available stereospecifically labelled at **C-3** with two of the isotopes of hydrogen and labelled in the **4-** *pro-S* position with the third isotope **of** hydrogen.

We now report synthesis of a variety of stereospecifically labelled glutamic acids which should be useful in the study of glutamic acid metabolism. Two **of** these fulfil the criteria outlined above 'for the study of the glutamatemutase system.

Fumaric acid (4) and $[2,3^{-2}H_2]$ fumaric acid (4, $H_A =$ ²H)³ were incubated with the commercially available? enzyme L-aspartase and buffered ammonium chloride in (respectively) ${}^{2}H_{2}O$ and ${}^{1}H_{2}O$. L-Aspartase is known⁴ to add ammonia to the olefin with *trans* stereospecificity so that 25% yields of $(2S,3R)$ -[3-²H₁]- and $(2S,3S)$ -[2,3-²H₂]aspartic acid $[(5; H_B = {}^2H)$ and $(5; H_A = {}^2H)$, respectively] were available from these reactions. Selective protection

of the a-carboxylic acid was achieved by reaction with trifluoroacetic anhydride *(85%* yield) and treatment of the resultant anhydride with ethanol⁵ when the esters **(6;** $H_B = {}^{2}H$)^{\dagger} and **(6;** $H_A = {}^{2}H$)^{\dagger} were obtained in 88% yield. Formation of the acid chlorides followed by reaction with diazomethane gave the diazoketones $(7; H_B = {^2H})_1^+$ and $(7; H_A = {}^2H)^+$ in 79% yield. Wolff rearrangement was achieved by photolysis in dioxan containing water to hydrolyse the intermediate ketens, and the products *(8;* $R^1 = CF_3CO, R^2 = Et$, obtained in *ca.* 64% yield, were hydrolysed using aqueous HCl to yield $(2S, 3S)$ - $[3^{-2}H,]$ and $(2S,3R)$ - $[2,3$ -²H₂]-glutamic acid $[(8; R^1 = R^2 =$ $H,H_B = {}^2H$) and (8; $R^1 = R^2 = H,H_A = {}^2H$)], respectively, in *ca.* 92% yield. e resultant anhydride with ethanol⁵ when the esters ; $H_B = {}^2H$); and (6; $H_A = {}^2H$); were obtained in 88% eld.

(ith diazomethane gave the diazoketones (7; $H_B = {}^2H$); deld. Formation of the acid chlorides followed by

FIGURE. ¹**H**-n.m.r. spectra in 10% NaO²H-²H₂O of (A) (2S)-
glutamic acid (1); (B) (2S,3S)-[3⁻²H₁]glutamic acid (8; R¹ = **R**² = **H**,H_B = ²H; and (C) $(2S, 3S)$ -[3- H_{1}]glutamic acid **(8;** R² = **H**,H_B = ²H; and (C) $(2S, 3R)$ -[2,3-²H₂]glutamic acid $R^2 = R_1, R_B = 1$; and (C)
(8; $R^1 = R^2 = H, H_A = 2H$).

Although the Wolff rearrangement involved migration of the prochiral centre, C-3, it is known that this rearrangement is stereospecific and involves retention of stereochemistry for tertiary and quaternary chiral migrating groups.⁶ The stereochemical integrity at C-3 in the [3-²H]glutamates could be ascertained from the lH-n.m.r. spectra (Figure) where the complex multipet centred at **6 1.85** (Figure A) showed specific absences in the spectra of the deuteriated analogues (Figures B and C). The absolute stereochemistry at C-3 was verified by degradation of the glutamates to succinic acid **(9)** using chloramine-T. 0.r.d.

t **From Sigma Ltd. In a typical experiment we have used 10 units of the enzyme to prepare 3-4** *g* **of labelled aspartate.**

2 These compounds had the expected spectral properties and stereochemical integrity was confirmed by the observation of **selective omissions in the AB part** of **the ABX system for H-2 and H-3.**

and c.d. measurements⁷ showed that $(2S, 3S)$ - $[3^{-2}H_1]$ glutamic acid (8; $R^1 = R^2 = H, H_B = {}^2H$) gave (S)-[2-²H₁]succinic acid (9; H_B = ²H) and that $(2S,3R)$ -[2,3-²H₂]- glutamic acid (8; $R^1 = R^2 = H, H_A = {}^2H$) gave *(R)*- $[2\text{-}^2H_1]$ succinic acid (9; $H_A = {}^2H$). The Wolff rearrangement had therefore taken place with retention of configuration at the secondary chiral centre.

To achieve non-chiral labelling at C-4, the Wolff rearrangement was first conducted using undeuteriated diazoketone (7) in the presence of 2H_2O to yield $[4-{}^2H_1]$ glutamic acid in which the resonance at δ 2.24 in the lH-n.m.r. spectrum (Figure) integrated as one proton. The reaction was therefore repeated using the deuteriated diazoketones (7; $H_B = {}^2H$) and (7; $H_A = {}^2H$) in the presence of ${}^{3}H_{2}O$ to yield (2S,3S,4RS)-[3- ${}^{2}H_{1}$, 4- ${}^{3}H_{1}$]- and $(2S, 3R, 4RS)$ -[2,3-²H₂, 4-³H₁]-glutamic acids [(8; R¹ = $R^2 = H, H_B = {}^2H, H_C = {}^3H$ and $(8; R^1 = R^2 = H, H_A =$ $*H, H_c = *H$)], respectively.

One **of** us (S. J.F.) thanks the S.R.C. for a studentship.

(Received, 12th *September* 1979; *Corn.* **976.)**

-
-
- ² M. Sprecher, R. L. Switzer, and D. B. Sprinson, *J. Biol. Chem.*, 1966, 241, 864.
³ E. M. Richards, J. C. Tebby, R. S. Ward, and D. H. Williams, *J. Chem. Soc.* (C), 1969, 1542.
⁴ D. W. Young in 'Isotopes in Organi
- F. Weygand, P. Klinke, and **I.** Eigen, *Chem. Ber.,* **1957, 90, 1896.**
- * P. A. S. Smith in 'Molecular Rearrangements,' ed. P. DeMayo, Wiley–Interscience, New York, 1967, part 1, p. 528.
* P. A. S. Smith in 'Molecular Rearrangements,' ed. P. DeMayo, Wiley–Interscience, New York, 1967, part 1,
-

¹'Glutamic Acid-Advances in Biochemistry and Physiology,' ed. L. J. Filer, Raven Press, New York, **1979.**